Environmental Science Pacing Guide – Block Schedule (2019-2020). Also read, "Environmental_Science_GSE_Learning_Targets-2017-18".

Unit	Wee k	Assessments	GSE	Topics Covered
1- Intro to Environmental Science (Test 1)	1.5	Summative test	5c 5d	Evidence based argument regarding human innovations (agricultural, medical, technological, industrial); Design and defend a plan to reduce ecological footprint Environmental Science as an interdisciplinary science; Tragedy of the Commons; Intro terms; Environmental ethics; Resources; Environmental law; Ecological footprint; Environmental world views (See http://www.aurumscience.com/environmental/1_introduction/lecture.html for PowerPoint)
- Ecology (Test 2)	2		1a	Levels of organization in ecosystems – organism, population, community, biosphere Ch4 Lesson 1
			1b	Food webs/chains, trophic levels. Use laws of thermodynamics to predict energy transfers in the ecosystem (10% rules). Ch 5 Lesson 3
2 – (3	Summative test - Ecology	1c	Construct an argument for the necessity of biogeochemical cycles (water, nitrogen, phosphorus, oxygen/carbon) for sustainable ecosystems Ch 3 Lesson 3 (water) and 4 (biogeochemical cycles)
3 - Biomes (Project 1)	4	Summative project/ presentation	1d	Biomes – relationships between physical factors and organismal adaptations (insolation, proximity to coastline, topography, etc) Impact of physical and chemical factors on aquatic ecosystems in GA (streams, ponds, coastlines, estuaries, lakes Ecosystem/Biome Project * include Aquatic Ecosystems
4 – Biodiversity and Succession (Test 3)	5		2c	Succession – Construct an argument to predict changes in biomass, biodiversity, and complexity Explore outside: observe, create timeline, make predictions Ch 5 Lesson 4
	6		2d	Biodiversity – ecosystem resilience (keystone, invasive, endemic, native, indicator, and endangered) Endangered Species and Invasive Species Project Ch 7 All
	7	Summative test – Succession and Biodiversity	1e	

Environmental Science Pacing Guide - Block Schedule (2019-2020). Also read, "Environmental_Science_GSE_Learning_Targets-2017-18".

LITVIIOTITIE	Environmental Science Pacing Guide – Block Schedule (2019-2020). Also read, "Environmental_Science_GSE_Learning_Targets-2017-18".					
5 – Energy Consumption (Test 4)	8		3a	Origin and consumption of renewable (wind, solar, geothermal, biofuel, tidal) and nonrenewable energy (fossil fuels and nuclear) <u>Ch 17 and 18 All</u>		
		Summative Test	3b	Economic, social, environmental risks and benefits of renewable and nonrenewable energy sources Introduce 3c and 3d before fall break. Ch 17 and 18 All		
e [est 5]	9		2a	Climate change – long (Milankovitch cycles) and short term (El Niño, volcanism) fluctuations <u>Ch 16 All</u>		
6 – Climate Change (Test 5)	10	Summative test – Greenhouse Effect and Global Warming	2b	Greenhouse effect – effect of CO ₂ and methane on atmospheric chemistry <u>Ch 16 All</u>		
7- Moving toward sustainability (Project 2)	11		3c	Sustainability potential of renewable and nonrenewable energy sources		
	12	Summative Project	3d	Design and defend a sustainable energy plan for your area <u>Sustainability Project</u>		

Environmental Science Pacing Guide – Block Schedule (2019-2020). Also read, "Environmental_Science_GSE_Learning_Targets-2017-18".

		nonco i acing colac bloc		2017 2029; 7130 1000, Eliviroliniolital_ocioneo_coe_coaniing_raigois 2017 10 :
8- Human Population Growth (Test 6)	13		4C	Human population growth affecting food demand and supply (GMOs, monocultures, desertification, Green Revolution) <u>Ch 12 Lessons 2-4</u>
	14		5a	Relationship between quality of life and human impact on environment (pop. growth, education, and gross national product) <u>Ch 12 Lessons 2-4</u>
	15	Summative Test – Human Population	5b	Analyze the demographic transition model. Compare birth and death rates in developing vs. developed nations. <u>Ch 8 All</u>
9- Human Impact (Project 3)	16		4 a	Construct and revise an evidence-based claim about the effects of human activity on natural resources (ex: wastewater treatment, mining, agriculture, etc on land, water, air, organisms)
	17	Summative Group Project— Assign problem, students create solutions	4b	Design, evaluate, and refine solutions to reduce human impact (smog, ozone depletion, urbanization, ocean acidification, global warming) Human Impact Project
Review	18		ALL	Review
NA (Exams)	19		ALL	Final Exams